Skip to content

trulens.apps.llamaindexยถ

trulens.apps.llamaindex ยถ

Additional Dependency Required

To use this module, you must have the trulens-apps-llamaindex package installed.

pip install trulens-apps-llamaindex

Classesยถ

WithFeedbackFilterNodes ยถ

Bases: RetrieverQueryEngine

Attributesยถ
threshold instance-attribute ยถ
threshold: float = threshold

A BaseQueryEngine that filters documents using a minimum threshold on a feedback function before returning them.

PARAMETER DESCRIPTION
feedback

use this feedback function to score each document.

threshold

and keep documents only if their feedback value is at least this threshold.

"Using TruLens guardrail context filters with LlamaIndex"
from trulens.apps.llamaindex.guardrails import WithFeedbackFilterNodes

# note: feedback function used for guardrail must only return a score, not also reasons
feedback = (
    Feedback(provider.context_relevance)
    .on_input()
    .on(context)
)

filtered_query_engine = WithFeedbackFilterNodes(query_engine, feedback=feedback, threshold=0.5)

tru_recorder = TruLlama(filtered_query_engine,
    app_name="LlamaIndex_App",
    app_version="v1_filtered"
)

with tru_recorder as recording:
    llm_response = filtered_query_engine.query("What did the author do growing up?")
Functionsยถ
query ยถ
query(query: QueryBundle, **kwargs) -> List[NodeWithScore]

An extended query method that will:

  1. Query the engine with the given query bundle (like before).
  2. Evaluate nodes with a specified feedback function.
  3. Filter out nodes that do not meet the minimum threshold.
  4. Synthesize with only the filtered nodes.
PARAMETER DESCRIPTION
query

The query bundle to search for relevant nodes.

TYPE: QueryBundle

**kwargs

additional keyword arguments.

DEFAULT: {}

RETURNS DESCRIPTION
List[NodeWithScore]

List[NodeWithScore]: a list of filtered, relevant nodes.

LlamaInstrument ยถ

Bases: Instrument

Instrumentation for LlamaIndex apps.

Attributesยถ
INSTRUMENT class-attribute instance-attribute ยถ
INSTRUMENT = '__tru_instrumented'

Attribute name to be used to flag instrumented objects/methods/others.

APPS class-attribute instance-attribute ยถ
APPS = '__tru_apps'

Attribute name for storing apps that expect to be notified of calls.

Classesยถ
Default ยถ

Instrumentation specification for LlamaIndex apps.

Attributesยถ
MODULES class-attribute instance-attribute ยถ
MODULES = union(MODULES)

Modules by prefix to instrument.

Note that llama_index uses langchain internally for some things.

CLASSES class-attribute instance-attribute ยถ
CLASSES = lambda: union(CLASSES())

Classes to instrument.

METHODS class-attribute instance-attribute ยถ
METHODS: List[InstrumentedMethod] = METHODS + [
    InstrumentedMethod("chat", BaseLLM),
    InstrumentedMethod("complete", BaseLLM),
    InstrumentedMethod("stream_chat", BaseLLM),
    InstrumentedMethod("stream_complete", BaseLLM),
    InstrumentedMethod("achat", BaseLLM),
    InstrumentedMethod("acomplete", BaseLLM),
    InstrumentedMethod("astream_chat", BaseLLM),
    InstrumentedMethod("astream_complete", BaseLLM),
    InstrumentedMethod("__call__", BaseTool),
    InstrumentedMethod("call", BaseTool),
    InstrumentedMethod("acall", AsyncBaseTool),
    InstrumentedMethod("put", BaseMemory),
    InstrumentedMethod("get_response", Refine),
    InstrumentedMethod("predict", BaseLLMPredictor),
    InstrumentedMethod("apredict", BaseLLMPredictor),
    InstrumentedMethod("stream", BaseLLMPredictor),
    InstrumentedMethod("astream", BaseLLMPredictor),
    InstrumentedMethod("query", BaseQueryEngine),
    InstrumentedMethod("aquery", BaseQueryEngine),
    InstrumentedMethod("synthesize", BaseQueryEngine),
    InstrumentedMethod("asynthesize", BaseQueryEngine),
    InstrumentedMethod("chat", BaseChatEngine),
    InstrumentedMethod("achat", BaseChatEngine),
    InstrumentedMethod("stream_chat", BaseChatEngine),
    InstrumentedMethod("astream_chat", BaseChatEngine),
    InstrumentedMethod("complete", BaseChatEngine),
    InstrumentedMethod("acomplete", BaseChatEngine),
    InstrumentedMethod("stream_complete", BaseChatEngine),
    InstrumentedMethod("astream_complete", BaseChatEngine),
    InstrumentedMethod(
        "retrieve", BaseQueryEngine, **_retrieval_span()
    ),
    InstrumentedMethod(
        "_retrieve", BaseQueryEngine, **_retrieval_span()
    ),
    InstrumentedMethod(
        "_aretrieve", BaseQueryEngine, **_retrieval_span()
    ),
    InstrumentedMethod(
        "retrieve", BaseRetriever, **_retrieval_span()
    ),
    InstrumentedMethod(
        "_retrieve", BaseRetriever, **_retrieval_span()
    ),
    InstrumentedMethod(
        "_aretrieve", BaseRetriever, **_retrieval_span()
    ),
    InstrumentedMethod(
        "retrieve",
        WithFeedbackFilterNodes,
        **_retrieval_span()
    ),
    InstrumentedMethod(
        "_retrieve",
        WithFeedbackFilterNodes,
        **_retrieval_span()
    ),
    InstrumentedMethod(
        "_aretrieve",
        WithFeedbackFilterNodes,
        **_retrieval_span()
    ),
    InstrumentedMethod(
        "_postprocess_nodes", BaseNodePostprocessor
    ),
    InstrumentedMethod(
        "_run_component", QueryEngineComponent
    ),
    InstrumentedMethod(
        "_run_component", RetrieverComponent
    ),
]

Methods to instrument.

Functionsยถ
print_instrumentation ยถ
print_instrumentation() -> None

Print out description of the modules, classes, methods this class will instrument.

to_instrument_object ยถ
to_instrument_object(obj: object) -> bool

Determine whether the given object should be instrumented.

to_instrument_class ยถ
to_instrument_class(cls: type) -> bool

Determine whether the given class should be instrumented.

to_instrument_module ยถ
to_instrument_module(module_name: str) -> bool

Determine whether a module with the given (full) name should be instrumented.

_have_context staticmethod ยถ
_have_context() -> bool

Determine whether context vars we need for recording are available.

tracked_method_wrapper ยถ
tracked_method_wrapper(
    query: Lens,
    func: Callable,
    method_name: str,
    cls: type,
    obj: object,
    span_type: Optional[SpanType] = None,
    attributes: Optional[Attributes] = None,
    must_be_first_wrapper: bool = False,
)

Wrap a method to capture its inputs/outputs/errors.

instrument_method ยถ
instrument_method(method_name: str, obj: Any, query: Lens)

Instrument a method.

instrument_class ยถ
instrument_class(cls)

Instrument the given class cls's new method.

This is done so we can be aware when new instances are created and is needed for wrapped methods that dynamically create instances of classes we wish to instrument. As they will not be visible at the time we wrap the app, we need to pay attention to new to make a note of them when they are created and the creator's path. This path will be used to place these new instances in the app json structure.

instrument_object ยถ
instrument_object(
    obj, query: Lens, done: Optional[Set[int]] = None
)

Instrument the given object obj and its components.

TruLlama ยถ

Bases: App

Recorder for LlamaIndex applications.

This recorder is designed for LlamaIndex apps, providing a way to instrument, log, and evaluate their behavior.

Example: "Creating a LlamaIndex application"

Consider an example LlamaIndex application. For the complete code
example, see [LlamaIndex
Quickstart](https://docs.llamaindex.ai/en/stable/getting_started/starter_example.html).

```python
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)

query_engine = index.as_query_engine()
```

Feedback functions can utilize the specific context produced by the application's retriever. This is achieved using the select_context method, which then can be used by a feedback selector, such as on(context).

Example: "Defining a feedback function"

```python
from trulens.providers.openai import OpenAI
from trulens.core import Feedback
import numpy as np

# Select context to be used in feedback.
from trulens.apps.llamaindex import TruLlama
context = TruLlama.select_context(query_engine)

# Use feedback
f_context_relevance = (
    Feedback(provider.context_relevance_with_context_reasons)
    .on_input()
    .on(context)  # Refers to context defined from `select_context`
    .aggregate(np.mean)
)
```

The application can be wrapped in a TruLlama recorder to provide logging and evaluation upon the application's use.

Example: "Using the TruLlama recorder"

```python
from trulens.apps.llamaindex import TruLlama
# f_lang_match, f_qa_relevance, f_context_relevance are feedback functions
tru_recorder = TruLlama(query_engine,
    app_name='LlamaIndex",
    app_version="base',
    feedbacks=[f_lang_match, f_qa_relevance, f_context_relevance])

with tru_recorder as recording:
    query_engine.query("What is llama index?")
```

Feedback functions can utilize the specific context produced by the application's query engine. This is achieved using the select_context method, which then can be used by a feedback selector, such as on(context).

Further information about LlamaIndex apps can be found on the ๐Ÿฆ™ LlamaIndex Documentation page.

PARAMETER DESCRIPTION
app

A LlamaIndex application.

TYPE: Union[BaseQueryEngine, BaseChatEngine]

**kwargs

Additional arguments to pass to App and AppDefinition.

TYPE: dict DEFAULT: {}

Attributesยถ
_context_contexts class-attribute instance-attribute ยถ
_context_contexts = ContextVar(
    "context_contexts", default=set()
)

ContextVars for storing collections of RecordingContext .

_stack_contexts class-attribute instance-attribute ยถ
_stack_contexts = ContextVar('stack_contexts', default={})

ContextVars for storing call stacks.

tru_class_info instance-attribute ยถ
tru_class_info: Class

Class information of this pydantic object for use in deserialization.

Using this odd key to not pollute attribute names in whatever class we mix this into. Should be the same as CLASS_INFO.

app_id class-attribute instance-attribute ยถ
app_id: AppID = Field(frozen=True)

Unique identifier for this app.

Computed deterministically from app_name and app_version. Leaving it here for it to be dumped when serializing. Also making it read-only as it should not be changed after creation.

app_name instance-attribute ยถ
app_name: AppName

Name for this app. Default is "default_app".

app_version instance-attribute ยถ
app_version: AppVersion

Version tag for this app. Default is "base".

tags instance-attribute ยถ
tags: Tags = tags

Tags for the app.

metadata instance-attribute ยถ
metadata: Metadata

Metadata for the app.

feedback_definitions class-attribute instance-attribute ยถ
feedback_definitions: Sequence[FeedbackDefinitionID] = []

Feedback functions to evaluate on each record.

feedback_mode class-attribute instance-attribute ยถ
feedback_mode: FeedbackMode = WITH_APP_THREAD

How to evaluate feedback functions upon producing a record.

record_ingest_mode instance-attribute ยถ
record_ingest_mode: RecordIngestMode = record_ingest_mode

Mode of records ingestion.

root_class instance-attribute ยถ
root_class: Class

Class of the main instrumented object.

Ideally this would be a ClassVar but since we want to check this without instantiating the subclass of AppDefinition that would define it, we cannot use ClassVar.

initial_app_loader_dump class-attribute instance-attribute ยถ
initial_app_loader_dump: Optional[SerialBytes] = None

Serialization of a function that loads an app.

Dump is of the initial app state before any invocations. This can be used to create a new session.

Warning

Experimental work in progress.

app_extra_json instance-attribute ยถ
app_extra_json: JSON

Info to store about the app and to display in dashboard.

This can be used even if app itself cannot be serialized. app_extra_json, then, can stand in place for whatever data the user might want to keep track of about the app.

feedbacks class-attribute instance-attribute ยถ
feedbacks: List[Feedback] = Field(
    exclude=True, default_factory=list
)

Feedback functions to evaluate on each record.

session class-attribute instance-attribute ยถ
session: TruSession = Field(
    default_factory=TruSession, exclude=True
)

Session for this app.

connector property ยถ
connector: DBConnector

Database connector.

db property ยถ
db: DB

Database used by this app.

main_method_name class-attribute instance-attribute ยถ
main_method_name: Optional[str] = Field(None)

Name of the main method of the app to be recorded. For serialization and this is required for OTEL.

instrument class-attribute instance-attribute ยถ
instrument: Optional[Instrument] = Field(None, exclude=True)

Instrumentation class.

This is needed for serialization as it tells us which objects we want to be included in the json representation of this app.

recording_contexts class-attribute instance-attribute ยถ
recording_contexts: ContextVar[_RecordingContext] = Field(
    None, exclude=True
)

Sequences of records produced by the this class used as a context manager are stored in a RecordingContext.

Using a context var so that context managers can be nested.

instrumented_methods class-attribute instance-attribute ยถ
instrumented_methods: Dict[int, Dict[Callable, Lens]] = (
    Field(exclude=True, default_factory=dict)
)

Mapping of instrumented methods (by id(.) of owner object and the function) to their path in this app.

records_with_pending_feedback_results class-attribute instance-attribute ยถ
records_with_pending_feedback_results: BlockingSet[
    Record
] = Field(exclude=True, default_factory=BlockingSet)

Records produced by this app which might have yet to finish feedback runs.

manage_pending_feedback_results_thread class-attribute instance-attribute ยถ
manage_pending_feedback_results_thread: Optional[Thread] = (
    Field(exclude=True, default=None)
)

Thread for manager of pending feedback results queue.

See _manage_pending_feedback_results.

selector_check_warning class-attribute instance-attribute ยถ
selector_check_warning: bool = False

Issue warnings when selectors are not found in the app with a placeholder record.

If False, constructor will raise an error instead.

selector_nocheck class-attribute instance-attribute ยถ
selector_nocheck: bool = False

Ignore selector checks entirely.

This may be necessary 1if the expected record content cannot be determined before it is produced.

Functionsยถ
on_method_instrumented ยถ
on_method_instrumented(
    obj: object, func: Callable, path: Lens
)

Called by instrumentation system for every function requested to be instrumented by this app.

get_method_path ยถ
get_method_path(obj: object, func: Callable) -> Lens

Get the path of the instrumented function method relative to this app.

get_methods_for_func ยถ
get_methods_for_func(
    func: Callable,
) -> Iterable[Tuple[int, Callable, Lens]]

Get the methods (rather the inner functions) matching the given func and the path of each.

See WithInstrumentCallbacks.get_methods_for_func.

on_new_record ยถ
on_new_record(func) -> Iterable[_RecordingContext]

Called at the start of record creation.

See WithInstrumentCallbacks.on_new_record.

on_add_record ยถ
on_add_record(
    ctx: _RecordingContext,
    func: Callable,
    sig: Signature,
    bindings: BoundArguments,
    ret: Any,
    error: Any,
    perf: Perf,
    cost: Cost,
    existing_record: Optional[Record] = None,
    final: bool = False,
) -> Record

Called by instrumented methods if they use _new_record to construct a "record call list.

See WithInstrumentCallbacks.on_add_record.

__rich_repr__ ยถ
__rich_repr__() -> Result

Requirement for pretty printing using the rich package.

load staticmethod ยถ
load(obj, *args, **kwargs)

Deserialize/load this object using the class information in tru_class_info to lookup the actual class that will do the deserialization.

model_validate classmethod ยถ
model_validate(*args, **kwargs) -> Any

Deserialized a jsonized version of the app into the instance of the class it was serialized from.

Note

This process uses extra information stored in the jsonized object and handled by WithClassInfo.

continue_session staticmethod ยถ
continue_session(
    app_definition_json: JSON, app: Any
) -> AppDefinition

Instantiate the given app with the given state app_definition_json.

Warning

This is an experimental feature with ongoing work.

PARAMETER DESCRIPTION
app_definition_json

The json serialized app.

TYPE: JSON

app

The app to continue the session with.

TYPE: Any

RETURNS DESCRIPTION
AppDefinition

A new AppDefinition instance with the given app and the given app_definition_json state.

new_session staticmethod ยถ
new_session(
    app_definition_json: JSON,
    initial_app_loader: Optional[Callable] = None,
) -> AppDefinition

Create an app instance at the start of a session.

Warning

This is an experimental feature with ongoing work.

Create a copy of the json serialized app with the enclosed app being initialized to its initial state before any records are produced (i.e. blank memory).

_submit_feedback_functions staticmethod ยถ
_submit_feedback_functions(
    record: Record,
    feedback_functions: Sequence[Feedback],
    connector: DBConnector,
    app: Optional[AppDefinition] = None,
    on_done: Optional[
        Callable[
            [Union[FeedbackResult, Future[FeedbackResult]]],
            None,
        ]
    ] = None,
) -> List[Tuple[Feedback, Future[FeedbackResult]]]

Schedules to run the given feedback functions.

PARAMETER DESCRIPTION
record

The record on which to evaluate the feedback functions.

TYPE: Record

feedback_functions

A collection of feedback functions to evaluate.

TYPE: Sequence[Feedback]

connector

The database connector to use.

TYPE: DBConnector

app

The app that produced the given record. If not provided, it is looked up from the database of this TruSession instance

TYPE: Optional[AppDefinition] DEFAULT: None

on_done

A callback to call when each feedback function is done.

TYPE: Optional[Callable[[Union[FeedbackResult, Future[FeedbackResult]]], None]] DEFAULT: None

Returns:

List[Tuple[Feedback, Future[FeedbackResult]]]

Produces a list of tuples where the first item in each tuple is the
feedback function and the second is the future of the feedback result.
get_loadable_apps staticmethod ยถ
get_loadable_apps()

Gets a list of all of the loadable apps.

Warning

This is an experimental feature with ongoing work.

This is those that have initial_app_loader_dump set.

select_inputs classmethod ยถ
select_inputs() -> Lens

Get the path to the main app's call inputs.

select_outputs classmethod ยถ
select_outputs() -> Lens

Get the path to the main app's call outputs.

__del__ ยถ
__del__()

Shut down anything associated with this app that might persist otherwise.

_start_manage_pending_feedback_results ยถ
_start_manage_pending_feedback_results() -> None

Start the thread that manages the queue of records with pending feedback results.

This is meant to be run permanently in a separate thread. It will remove records from the set records_with_pending_feedback_results as their feedback results are computed.

_manage_pending_feedback_results staticmethod ยถ
_manage_pending_feedback_results(
    self_proxy: ProxyType[App],
) -> None

Manage the queue of records with pending feedback results.

This is meant to be run permanently in a separate thread. It will remove records from the set records_with_pending_feedback_results as their feedback results are computed.

wait_for_feedback_results ยถ
wait_for_feedback_results(
    feedback_timeout: Optional[float] = None,
) -> Iterable[Record]

Wait for all feedbacks functions to complete.

PARAMETER DESCRIPTION
feedback_timeout

Timeout in seconds for waiting for feedback results for each feedback function. Note that this is not the total timeout for this entire blocking call.

TYPE: Optional[float] DEFAULT: None

RETURNS DESCRIPTION
Iterable[Record]

An iterable of records that have been waited on. Note a record will be included even if a feedback computation for it failed or timed out.

This applies to all feedbacks on all records produced by this app. This call will block until finished and if new records are produced while this is running, it will include them.

_tru_post_init ยถ
_tru_post_init()

Database-related initialization and additional data checks.

DB
  • Insert the app into the database.
  • Insert feedback function definitions into the database.
Checks
  • In deferred mode, try to serialize and deserialize feedback functions.
  • Check that feedback function selectors are likely to refer to expected app or record components.
_extract_content ยถ
_extract_content(value, content_keys=['content'])

Extracts the 'content' from various data types commonly used by libraries like OpenAI, Canopy, LiteLLM, etc. This method navigates nested data structures (pydantic models, dictionaries, lists) to retrieve the 'content' field. If 'content' is not directly available, it attempts to extract from known structures like 'choices' in a ChatResponse. This standardizes extracting relevant text or data from complex API responses or internal data representations.

PARAMETER DESCRIPTION
value

The input data to extract content from. Can be a pydantic model, dictionary, list, or basic data type.

RETURNS DESCRIPTION

The extracted content, which may be a single value, a list of values,

or a nested structure with content extracted from all levels.

json ยถ
json(*args, **kwargs)

Create a json string representation of this app.

_check_instrumented ยถ
_check_instrumented(func)

Issue a warning and some instructions if a function that has not been instrumented is being used in a with_ call.

awith_ async ยถ
awith_(
    func: CallableMaybeAwaitable[A, T], *args, **kwargs
) -> T

Call the given async func with the given *args and **kwargs while recording, producing func results.

The record of the computation is available through other means like the database or dashboard. If you need a record of this execution immediately, you can use awith_record or the App as a context manager instead.

with_ async ยถ
with_(func: Callable[[A], T], *args, **kwargs) -> T

Call the given async func with the given *args and **kwargs while recording, producing func results.

The record of the computation is available through other means like the database or dashboard. If you need a record of this execution immediately, you can use awith_record or the App as a context manager instead.

with_record ยถ
with_record(
    func: Callable[[A], T],
    *args,
    record_metadata: JSON = None,
    **kwargs
) -> Tuple[T, Record]

Call the given func with the given *args and **kwargs, producing its results as well as a record of the execution.

awith_record async ยถ
awith_record(
    func: Callable[[A], Awaitable[T]],
    *args,
    record_metadata: JSON = None,
    **kwargs
) -> Tuple[T, Record]

Call the given func with the given *args and **kwargs, producing its results as well as a record of the execution.

_add_future_feedback ยถ
_add_future_feedback(
    future_or_result: Union[
        FeedbackResult, Future[FeedbackResult]
    ]
) -> None

Callback used to add feedback results to the database once they are done.

See _handle_record.

_handle_record ยถ
_handle_record(
    record: Record,
    feedback_mode: Optional[FeedbackMode] = None,
) -> Optional[
    List[Tuple[Feedback, Future[FeedbackResult]]]
]

Write out record-related info to database if set and schedule feedback functions to be evaluated. If feedback_mode is provided, will use that mode instead of the one provided to constructor.

dummy_record ยถ
dummy_record(
    cost: Cost = Cost(),
    perf: Perf = now(),
    ts: datetime = now(),
    main_input: str = "main_input are strings.",
    main_output: str = "main_output are strings.",
    main_error: str = "main_error are strings.",
    meta: Dict = {"metakey": "meta are dicts"},
    tags: str = "tags are strings",
) -> Record

Create a dummy record with some of the expected structure without actually invoking the app.

The record is a guess of what an actual record might look like but will be missing information that can only be determined after a call is made.

All args are Record fields except these:

- `record_id` is generated using the default id naming schema.
- `app_id` is taken from this recorder.
- `calls` field is constructed based on instrumented methods.
instrumented ยถ
instrumented() -> Iterable[Tuple[Lens, ComponentView]]

Iteration over instrumented components and their categories.

print_instrumented ยถ
print_instrumented() -> None

Print the instrumented components and methods.

format_instrumented_methods ยถ
format_instrumented_methods() -> str

Build a string containing a listing of instrumented methods.

print_instrumented_methods ยถ
print_instrumented_methods() -> None

Print instrumented methods.

print_instrumented_components ยถ
print_instrumented_components() -> None

Print instrumented components and their categories.

add_run ยถ
add_run(run_config: RunConfig) -> Union[Run, None]

add a new run to the snowflake App (if not already exists)

PARAMETER DESCRIPTION
run_config

Run config

TYPE: RunConfig

input_df

optional input dataset

TYPE: Optional[DataFrame]

RETURNS DESCRIPTION
Run

Run instance

TYPE: Union[Run, None]

get_run ยถ
get_run(run_name: str) -> Run

Retrieve a run by name.

PARAMETER DESCRIPTION
run_name

unique name of the run

TYPE: str

RETURNS DESCRIPTION
Run

Run instance

TYPE: Run

list_runs ยถ
list_runs() -> List[Run]

Retrieve all runs belong to the snowflake App.

RETURNS DESCRIPTION
List[Run]

List[Run]: List of Run instances

delete ยถ
delete() -> None

Delete the snowflake App (external agent) in snowflake. All versions will be removed

delete_version ยถ
delete_version() -> None

Delete the current version of the snowflake App (external agent) in snowflake. Only the non-default version can be deleted.

select_source_nodes classmethod ยถ
select_source_nodes() -> Lens

Get the path to the source nodes in the query output.

wrap_lazy_values ยถ
wrap_lazy_values(
    rets: Any,
    wrap: Callable[[T], T],
    on_done: Optional[Callable[[T], T]],
    context_vars: Optional[ContextVarsOrValues] = None,
) -> Any

Wrap any llamaindex specific lazy values with wrappers that have callback wrap.

select_context classmethod ยถ
select_context(
    app: Optional[
        Union[BaseQueryEngine, BaseChatEngine]
    ] = None
) -> Lens

Get the path to the context in the query output.

main_input ยถ
main_input(
    func: Callable, sig: Signature, bindings: BoundArguments
) -> str

Determine the main input string for the given function func with signature sig if it is to be called with the given bindings bindings.

main_output ยถ
main_output(
    func: Callable,
    sig: Signature,
    bindings: BoundArguments,
    ret: Any,
) -> Optional[str]

Determine the main out string for the given function func with signature sig after it is called with the given bindings and has returned ret.

_main_output_attribute ยถ
_main_output_attribute(ret: Any) -> Optional[str]

Which attribute in ret contains the main output of this llama_index app.

Functionsยถ