Skip to content

trulens.feedback

trulens.feedback

Classes

GroundTruthAggregator

Bases: WithClassInfo, SerialModel

Attributes
tru_class_info instance-attribute
tru_class_info: Class

Class information of this pydantic object for use in deserialization.

Using this odd key to not pollute attribute names in whatever class we mix this into. Should be the same as CLASS_INFO.

model_config class-attribute
model_config: dict = dict(
    arbitrary_types_allowed=True, extra="allow"
)

Aggregate benchmarking metrics for ground-truth-based evaluation on feedback functions.

Functions
__rich_repr__
__rich_repr__() -> Result

Requirement for pretty printing using the rich package.

load staticmethod
load(obj, *args, **kwargs)

Deserialize/load this object using the class information in tru_class_info to lookup the actual class that will do the deserialization.

model_validate classmethod
model_validate(*args, **kwargs) -> Any

Deserialized a jsonized version of the app into the instance of the class it was serialized from.

Note

This process uses extra information stored in the jsonized object and handled by WithClassInfo.

register_custom_agg_func
register_custom_agg_func(
    name: str,
    func: Callable[
        [List[float], GroundTruthAggregator], float
    ],
) -> None

Register a custom aggregation function.

auc
auc(scores: List[float]) -> float

Calculate the area under the ROC curve. Can be used for meta-evaluation.

PARAMETER DESCRIPTION
scores

scores returned by feedback function

TYPE: List[float]

RETURNS DESCRIPTION
float

Area under the ROC curve

TYPE: float

kendall_tau
kendall_tau(
    scores: Union[List[float], List[List]]
) -> float

Calculate Kendall's tau. Can be used for meta-evaluation. Kendall’s tau is a measure of the correspondence between two rankings. Values close to 1 indicate strong agreement, values close to -1 indicate strong disagreement. This is the tau-b version of Kendall’s tau which accounts for ties.

PARAMETER DESCRIPTION
scores

scores returned by feedback function

TYPE: List[float]

RETURNS DESCRIPTION
float

Kendall's tau

TYPE: float

spearman_correlation
spearman_correlation(
    scores: Union[List[float], List[List]]
) -> float

Calculate the Spearman correlation. Can be used for meta-evaluation. The Spearman correlation coefficient is a nonparametric measure of rank correlation (statistical dependence between the rankings of two variables).

PARAMETER DESCRIPTION
scores

scores returned by feedback function

TYPE: List[float]

RETURNS DESCRIPTION
float

Spearman correlation

TYPE: float

pearson_correlation
pearson_correlation(
    scores: Union[List[float], List[List]]
) -> float

Calculate the Pearson correlation. Can be used for meta-evaluation. The Pearson correlation coefficient is a measure of the linear relationship between two variables.

PARAMETER DESCRIPTION
scores

scores returned by feedback function

TYPE: List[float]

RETURNS DESCRIPTION
float

Pearson correlation

TYPE: float

matthews_correlation
matthews_correlation(
    scores: Union[List[float], List[List]]
) -> float

Calculate the Matthews correlation coefficient. Can be used for meta-evaluation. The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications.

PARAMETER DESCRIPTION
scores

scores returned by feedback function

TYPE: List[float]

RETURNS DESCRIPTION
float

Matthews correlation coefficient

TYPE: float

cohens_kappa
cohens_kappa(
    scores: Union[List[float], List[List]], threshold=0.5
) -> float

Computes Cohen's Kappa score between true labels and predicted scores.

Parameters: - true_labels (list): A list of true labels. - scores (list): A list of predicted labels or scores.

Returns: - float: Cohen's Kappa score.

recall
recall(
    scores: Union[List[float], List[List]], threshold=0.5
)

Calculates recall given true labels and model-generated scores.

Parameters: - scores (list of float): A list of model-generated scores (0 to 1.0). - threshold (float): The threshold to convert scores to binary predictions. Default is 0.5.

Returns: - float: The recall score.

precision
precision(
    scores: Union[List[float], List[List]], threshold=0.5
)

Calculates precision given true labels and model-generated scores.

Parameters: - scores (list of float): A list of model-generated scores (0 to 1.0). - threshold (float): The threshold to convert scores to binary predictions. Default is 0.5.

Returns: - float: The precision score.

f1_score
f1_score(
    scores: Union[List[float], List[List]], threshold=0.5
)

Calculates the F1 score given true labels and model-generated scores.

Parameters: - scores (list of float): A list of model-generated scores (0 to 1.0). - threshold (float): The threshold to convert scores to binary predictions. Default is 0.5.

Returns: - float: The F1 score.

brier_score
brier_score(
    scores: Union[List[float], List[List]]
) -> float

assess both calibration and sharpness of the probability estimates Args: scores (List[float]): relevance scores returned by feedback function Returns: float: Brier score

ece
ece(score_confidence_pairs: List[Tuple[float]]) -> float

Calculate the expected calibration error. Can be used for meta-evaluation.

PARAMETER DESCRIPTION
score_confidence_pairs

list of tuples of relevance scores and confidences returned by feedback function

TYPE: List[Tuple[float]]

RETURNS DESCRIPTION
float

Expected calibration error

TYPE: float

mae
mae(scores: Union[List[float], List[List]]) -> float

Calculate the mean absolute error. Can be used for meta-evaluation.

PARAMETER DESCRIPTION
scores

scores returned by feedback function

TYPE: List[float]

RETURNS DESCRIPTION
float

Mean absolute error

TYPE: float

GroundTruthAgreement

Bases: WithClassInfo, SerialModel

Measures Agreement against a Ground Truth.

Attributes
tru_class_info instance-attribute
tru_class_info: Class

Class information of this pydantic object for use in deserialization.

Using this odd key to not pollute attribute names in whatever class we mix this into. Should be the same as CLASS_INFO.

Functions
__rich_repr__
__rich_repr__() -> Result

Requirement for pretty printing using the rich package.

load staticmethod
load(obj, *args, **kwargs)

Deserialize/load this object using the class information in tru_class_info to lookup the actual class that will do the deserialization.

model_validate classmethod
model_validate(*args, **kwargs) -> Any

Deserialized a jsonized version of the app into the instance of the class it was serialized from.

Note

This process uses extra information stored in the jsonized object and handled by WithClassInfo.

__init__
__init__(
    ground_truth: Union[
        List[Dict], Callable, DataFrame, FunctionOrMethod
    ],
    provider: Optional[LLMProvider] = None,
    bert_scorer: Optional[BERTScorer] = None,
    **kwargs
)

Measures Agreement against a Ground Truth.

Usage 1
from trulens.feedback import GroundTruthAgreement
from trulens.providers.openai import OpenAI
golden_set = [
    {"query": "who invented the lightbulb?", "expected_response": "Thomas Edison"},
    {"query": "ΒΏquien invento la bombilla?", "expected_response": "Thomas Edison"}
]
ground_truth_collection = GroundTruthAgreement(golden_set, provider=OpenAI())
Usage 2
from trulens.feedback import GroundTruthAgreement
from trulens.providers.openai import OpenAI
from trulens.core.session import TruSession

session = TruSession()
ground_truth_dataset = session.get_ground_truths_by_dataset("hotpotqa") # assuming a dataset "hotpotqa" has been created and persisted in the DB

ground_truth_collection = GroundTruthAgreement(ground_truth_dataset, provider=OpenAI())
Usage 3
from trulens.feedback import GroundTruthAgreement
from trulens.providers.cortex import Cortex
ground_truth_imp = llm_app
response = llm_app(prompt)

snowflake_connection_parameters = {
    "account": os.environ["SNOWFLAKE_ACCOUNT"],
    "user": os.environ["SNOWFLAKE_USER"],
    "password": os.environ["SNOWFLAKE_USER_PASSWORD"],
    "database": os.environ["SNOWFLAKE_DATABASE"],
    "schema": os.environ["SNOWFLAKE_SCHEMA"],
    "warehouse": os.environ["SNOWFLAKE_WAREHOUSE"],
}
ground_truth_collection = GroundTruthAgreement(
    ground_truth_imp,
    provider=Cortex(
        snowflake.connector.connect(**snowflake_connection_parameters),
        model_engine="mistral-7b",
    ),
)
PARAMETER DESCRIPTION
ground_truth

A list of query/response pairs or a function, or a dataframe containing ground truth dataset, or callable that returns a ground truth string given a prompt string.

TYPE: Union[List[Dict], Callable, DataFrame, FunctionOrMethod]

provider

The provider to use for agreement measures.

TYPE: Optional[LLMProvider] DEFAULT: None

bert_scorer

Internal Usage for DB serialization.

TYPE: Optional[BERTScorer] DEFAULT: None

agreement_measure
agreement_measure(
    prompt: str, response: str
) -> Union[float, Tuple[float, Dict[str, str]]]

Uses OpenAI's Chat GPT Model. A function that that measures similarity to ground truth. A second template is given to Chat GPT with a prompt that the original response is correct, and measures whether previous Chat GPT's response is similar.

Example

from trulens.core import Feedback
from trulens.feedback import GroundTruthAgreement
from trulens.providers.openai import OpenAI

golden_set = [
    {"query": "who invented the lightbulb?", "expected_response": "Thomas Edison"},
    {"query": "ΒΏquien invento la bombilla?", "expected_response": "Thomas Edison"}
]
ground_truth_collection = GroundTruthAgreement(golden_set, provider=OpenAI())

feedback = Feedback(ground_truth_collection.agreement_measure).on_input_output()
The on_input_output() selector can be changed. See Feedback Function Guide

PARAMETER DESCRIPTION
prompt

A text prompt to an agent.

TYPE: str

response

The agent's response to the prompt.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0 and 1. 0 being "not in agreement" and 1 being "in agreement".

TYPE: Union[float, Tuple[float, Dict[str, str]]]

dict

with key 'ground_truth_response'

TYPE: Union[float, Tuple[float, Dict[str, str]]]

ndcg_at_k
ndcg_at_k(
    query: str,
    retrieved_context_chunks: List[str],
    relevance_scores: Optional[List[float]] = None,
    k: Optional[int] = None,
) -> float

Compute NDCG@k for a given query and retrieved context chunks.

PARAMETER DESCRIPTION
query

The input query string.

TYPE: str

retrieved_context_chunks

List of retrieved context chunks.

TYPE: List[str]

relevance_scores

Relevance scores for each retrieved chunk.

TYPE: Optional[List[float]] DEFAULT: None

k

Rank position up to which to compute NDCG. If None, compute for all retrieved chunks.

TYPE: Optional[int] DEFAULT: None

RETURNS DESCRIPTION
float

Computed NDCG@k score.

TYPE: float

precision_at_k
precision_at_k(
    query: str,
    retrieved_context_chunks: List[str],
    relevance_scores: Optional[List[float]] = None,
    k: Optional[int] = None,
) -> float

Compute Precision@k for a given query and retrieved context chunks, considering tie handling.

PARAMETER DESCRIPTION
query

The input query string.

TYPE: str

retrieved_context_chunks

List of retrieved context chunks.

TYPE: List[str]

relevance_scores

Relevance scores for each retrieved chunk.

TYPE: Optional[List[float]] DEFAULT: None

k

Rank position up to which to compute Precision. If None, compute for all retrieved chunks.

TYPE: Optional[int] DEFAULT: None

RETURNS DESCRIPTION
float

Computed Precision@k score.

TYPE: float

recall_at_k
recall_at_k(
    query: str,
    retrieved_context_chunks: List[str],
    relevance_scores: Optional[List[float]] = None,
    k: Optional[int] = None,
) -> float

Compute Recall@k for a given query and retrieved context chunks, considering tie handling.

PARAMETER DESCRIPTION
query

The input query string.

TYPE: str

retrieved_context_chunks

List of retrieved context chunks.

TYPE: List[str]

relevance_scores

Relevance scores for each retrieved chunk.

TYPE: Optional[List[float]] DEFAULT: None

k

Rank position up to which to compute Recall. If None, compute for all retrieved chunks.

TYPE: Optional[int] DEFAULT: None

RETURNS DESCRIPTION
float

Computed Recall@k score.

TYPE: float

mrr
mrr(
    query: str,
    retrieved_context_chunks: List[str],
    relevance_scores: Optional[List[float]] = None,
) -> float

Compute Mean Reciprocal Rank (MRR) for a given query and retrieved context chunks.

PARAMETER DESCRIPTION
query

The input query string.

TYPE: str

retrieved_context_chunks

List of retrieved context chunks.

TYPE: List[str]

RETURNS DESCRIPTION
float

Computed MRR score.

TYPE: float

ir_hit_rate
ir_hit_rate(
    query: str,
    retrieved_context_chunks: List[str],
    k: Optional[int] = None,
) -> float

Compute IR Hit Rate (Hit Rate@k) for a given query and retrieved context chunks.

PARAMETER DESCRIPTION
query

The input query string.

TYPE: str

retrieved_context_chunks

List of retrieved context chunks.

TYPE: List[str]

k

Rank position up to which to compute Hit Rate. If None, compute for all retrieved chunks.

TYPE: Optional[int] DEFAULT: None

RETURNS DESCRIPTION
float

Computed Hit Rate@k score.

TYPE: float

absolute_error
absolute_error(
    prompt: str, response: str, score: float
) -> Tuple[float, Dict[str, float]]

Method to look up the numeric expected score from a golden set and take the difference.

Primarily used for evaluation of model generated feedback against human feedback

Example
from trulens.core import Feedback
from trulens.feedback import GroundTruthAgreement
from trulens.providers.bedrock import Bedrock

golden_set =
{"query": "How many stomachs does a cow have?", "expected_response": "Cows' diet relies primarily on grazing.", "expected_score": 0.4},
{"query": "Name some top dental floss brands", "expected_response": "I don't know", "expected_score": 0.8}
]

bedrock = Bedrock(
    model_id="amazon.titan-text-express-v1", region_name="us-east-1"
)
ground_truth_collection = GroundTruthAgreement(golden_set, provider=bedrock)

f_groundtruth = Feedback(ground_truth.absolute_error.on(Select.Record.calls[0].args.args[0]).on(Select.Record.calls[0].args.args[1]).on_output()
bert_score
bert_score(
    prompt: str, response: str
) -> Union[float, Tuple[float, Dict[str, str]]]

Uses BERT Score. A function that that measures similarity to ground truth using bert embeddings.

Example

from trulens.core import Feedback
from trulens.feedback import GroundTruthAgreement
from trulens.providers.openai import OpenAI
golden_set = [
    {"query": "who invented the lightbulb?", "expected_response": "Thomas Edison"},
    {"query": "ΒΏquien invento la bombilla?", "expected_response": "Thomas Edison"}
]
ground_truth_collection = GroundTruthAgreement(golden_set, provider=OpenAI())

feedback = Feedback(ground_truth_collection.bert_score).on_input_output()
The on_input_output() selector can be changed. See Feedback Function Guide

PARAMETER DESCRIPTION
prompt

A text prompt to an agent.

TYPE: str

response

The agent's response to the prompt.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0 and 1. 0 being "not in agreement" and 1 being "in agreement".

TYPE: Union[float, Tuple[float, Dict[str, str]]]

dict

with key 'ground_truth_response'

TYPE: Union[float, Tuple[float, Dict[str, str]]]

bleu
bleu(
    prompt: str, response: str
) -> Union[float, Tuple[float, Dict[str, str]]]

Uses BLEU Score. A function that that measures similarity to ground truth using token overlap.

Example

from trulens.core import Feedback
from trulens.feedback import GroundTruthAgreement
from trulens.providers.openai import OpenAI
golden_set = [
    {"query": "who invented the lightbulb?", "expected_response": "Thomas Edison"},
    {"query": "ΒΏquien invento la bombilla?", "expected_response": "Thomas Edison"}
]
ground_truth_collection = GroundTruthAgreement(golden_set, provider=OpenAI())

feedback = Feedback(ground_truth_collection.bleu).on_input_output()
The on_input_output() selector can be changed. See Feedback Function Guide

PARAMETER DESCRIPTION
prompt

A text prompt to an agent.

TYPE: str

response

The agent's response to the prompt.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0 and 1. 0 being "not in agreement" and 1 being "in agreement".

TYPE: Union[float, Tuple[float, Dict[str, str]]]

dict

with key 'ground_truth_response'

TYPE: Union[float, Tuple[float, Dict[str, str]]]

rouge
rouge(
    prompt: str, response: str
) -> Union[float, Tuple[float, Dict[str, str]]]

Uses BLEU Score. A function that that measures similarity to ground truth using token overlap.

PARAMETER DESCRIPTION
prompt

A text prompt to an agent.

TYPE: str

response

The agent's response to the prompt.

TYPE: str

RETURNS DESCRIPTION
Union[float, Tuple[float, Dict[str, str]]]
  • float: A value between 0 and 1. 0 being "not in agreement" and 1 being "in agreement".
Union[float, Tuple[float, Dict[str, str]]]
  • dict: with key 'ground_truth_response'

LLMProvider

Bases: Provider

An LLM-based provider.

This is an abstract class and needs to be initialized as one of these:

Attributes
tru_class_info instance-attribute
tru_class_info: Class

Class information of this pydantic object for use in deserialization.

Using this odd key to not pollute attribute names in whatever class we mix this into. Should be the same as CLASS_INFO.

endpoint class-attribute instance-attribute
endpoint: Optional[Endpoint] = None

Endpoint supporting this provider.

Remote API invocations are handled by the endpoint.

Functions
__rich_repr__
__rich_repr__() -> Result

Requirement for pretty printing using the rich package.

load staticmethod
load(obj, *args, **kwargs)

Deserialize/load this object using the class information in tru_class_info to lookup the actual class that will do the deserialization.

model_validate classmethod
model_validate(*args, **kwargs) -> Any

Deserialized a jsonized version of the app into the instance of the class it was serialized from.

Note

This process uses extra information stored in the jsonized object and handled by WithClassInfo.

generate_score
generate_score(
    system_prompt: str,
    user_prompt: Optional[str] = None,
    min_score_val: int = 0,
    max_score_val: int = 10,
    temperature: float = 0.0,
) -> float

Base method to generate a score normalized to 0 to 1, used for evaluation.

PARAMETER DESCRIPTION
system_prompt

A pre-formatted system prompt.

TYPE: str

user_prompt

An optional user prompt.

TYPE: Optional[str] DEFAULT: None

min_score_val

The minimum score value.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value.

TYPE: int DEFAULT: 10

temperature

The temperature for the LLM response.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
float

The score on a 0-1 scale.

generate_confidence_score
generate_confidence_score(
    verb_confidence_prompt: str,
    user_prompt: Optional[str] = None,
    min_score_val: int = 0,
    max_score_val: int = 10,
    temperature: float = 0.0,
) -> Tuple[float, Dict[str, float]]

Base method to generate a score normalized to 0 to 1, used for evaluation.

PARAMETER DESCRIPTION
verb_confidence_prompt

A pre-formatted system prompt.

TYPE: str

user_prompt

An optional user prompt.

TYPE: Optional[str] DEFAULT: None

min_score_val

The minimum score value.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value.

TYPE: int DEFAULT: 10

temperature

The temperature for the LLM response.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
Tuple[float, Dict[str, float]]

The feedback score on a 0-1 scale and the confidence score.

generate_score_and_reasons
generate_score_and_reasons(
    system_prompt: str,
    user_prompt: Optional[str] = None,
    min_score_val: int = 0,
    max_score_val: int = 10,
    temperature: float = 0.0,
) -> Tuple[float, Dict]

Base method to generate a score and reason, used for evaluation.

PARAMETER DESCRIPTION
system_prompt

A pre-formatted system prompt.

TYPE: str

user_prompt

An optional user prompt. Defaults to None.

TYPE: Optional[str] DEFAULT: None

min_score_val

The minimum score value.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value.

TYPE: int DEFAULT: 10

temperature

The temperature for the LLM response.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
float

The score on a 0-1 scale.

Dict

Reason metadata if returned by the LLM.

context_relevance
context_relevance(
    question: str,
    context: str,
    criteria: Optional[str] = None,
    min_score_val: int = 0,
    max_score_val: int = 3,
    temperature: float = 0.0,
) -> float

Uses chat completion model. A function that completes a template to check the relevance of the context to the question.

Example
from trulens.apps.langchain import TruChain
context = TruChain.select_context(rag_app)
feedback = (
    Feedback(provider.context_relevance)
    .on_input()
    .on(context)
    .aggregate(np.mean)
    )
PARAMETER DESCRIPTION
question

A question being asked.

TYPE: str

context

Context related to the question.

TYPE: str

criteria

If provided, overrides the evaluation criteria for evaluation. Defaults to None.

TYPE: Optional[str] DEFAULT: None

min_score_val

The minimum score value. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value. Defaults to 3.

TYPE: int DEFAULT: 3

temperature

The temperature for the LLM response, which might have impact on the confidence level of the evaluation. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

Returns: float: A value between 0.0 (not relevant) and 1.0 (relevant).

context_relevance_with_cot_reasons
context_relevance_with_cot_reasons(
    question: str,
    context: str,
    criteria: Optional[str] = None,
    min_score_val: int = 0,
    max_score_val: int = 3,
    temperature: float = 0.0,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the relevance of the context to the question. Also uses chain of thought methodology and emits the reasons.

Example
from trulens.apps.langchain import TruChain
context = TruChain.select_context(rag_app)
feedback = (
    Feedback(provider.context_relevance_with_cot_reasons)
    .on_input()
    .on(context)
    .aggregate(np.mean)
    )
PARAMETER DESCRIPTION
question

A question being asked.

TYPE: str

context

Context related to the question.

TYPE: str

criteria

If provided, overrides the evaluation criteria for evaluation. Defaults to None.

TYPE: Optional[str] DEFAULT: None

min_score_val

The minimum score value. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value. Defaults to 3.

TYPE: int DEFAULT: 3

temperature

The temperature for the LLM response, which might have impact on the confidence level of the evaluation. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
float

A value between 0 and 1. 0 being "not relevant" and 1 being "relevant".

TYPE: Tuple[float, Dict]

context_relevance_verb_confidence
context_relevance_verb_confidence(
    question: str,
    context: str,
    criteria: Optional[str] = None,
    min_score_val: int = 0,
    max_score_val: int = 3,
    temperature: float = 0.0,
) -> Tuple[float, Dict[str, float]]

Uses chat completion model. A function that completes a template to check the relevance of the context to the question. Also uses chain of thought methodology and emits the reasons.

Example
from trulens.apps.llamaindex import TruLlama
context = TruLlama.select_context(llamaindex_rag_app)
feedback = (
    Feedback(provider.context_relevance_with_cot_reasons)
    .on_input()
    .on(context)
    .aggregate(np.mean)
    )
PARAMETER DESCRIPTION
question

A question being asked.

TYPE: str

context

Context related to the question.

TYPE: str

criteria

If provided, overrides the evaluation criteria for evaluation. Defaults to None.

TYPE: Optional[str] DEFAULT: None

min_score_val

The minimum score value. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value. Defaults to 3.

TYPE: int DEFAULT: 3

temperature

The temperature for the LLM response, which might have impact on the confidence level of the evaluation. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

Returns: float: A value between 0 and 1. 0 being "not relevant" and 1 being "relevant". Dict[str, float]: A dictionary containing the confidence score.

relevance
relevance(
    prompt: str,
    response: str,
    criteria: Optional[str] = None,
    min_score_val: int = 0,
    max_score_val: int = 3,
    temperature: float = 0.0,
) -> float

Uses chat completion model. A function that completes a template to check the relevance of the response to a prompt.

Example
feedback = Feedback(provider.relevance).on_input_output()
Usage on RAG Contexts
feedback = Feedback(provider.relevance).on_input().on(
    TruLlama.select_source_nodes().node.text # See note below
).aggregate(np.mean)
PARAMETER DESCRIPTION
prompt

A text prompt to an agent.

TYPE: str

response

The agent's response to the prompt.

TYPE: str

criteria

If provided, overrides the evaluation criteria for evaluation. Defaults to None.

TYPE: Optional[str] DEFAULT: None

min_score_val

The minimum score value used by the LLM before normalization. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value used by the LLM before normalization. Defaults to 3.

TYPE: int DEFAULT: 3

temperature

The temperature for the LLM response, which might have impact on the confidence level of the evaluation. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
float

A value between 0 and 1. 0 being "not relevant" and 1 being "relevant".

TYPE: float

relevance_with_cot_reasons
relevance_with_cot_reasons(
    prompt: str,
    response: str,
    criteria: Optional[str] = None,
    min_score_val: int = 0,
    max_score_val: int = 3,
    temperature: float = 0.0,
) -> Tuple[float, Dict]

Uses chat completion Model. A function that completes a template to check the relevance of the response to a prompt. Also uses chain of thought methodology and emits the reasons.

Example
feedback = (
    Feedback(provider.relevance_with_cot_reasons)
    .on_input()
    .on_output()
PARAMETER DESCRIPTION
prompt

A text prompt to an agent.

TYPE: str

response

The agent's response to the prompt.

TYPE: str

criteria

If provided, overrides the evaluation criteria for evaluation. Defaults to None.

TYPE: Optional[str] DEFAULT: None

min_score_val

The minimum score value used by the LLM before normalization. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value used by the LLM before normalization. Defaults to 3.

TYPE: int DEFAULT: 3

temperature

The temperature for the LLM response, which might have impact on the confidence level of the evaluation. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
float

A value between 0 and 1. 0 being "not relevant" and 1 being "relevant".

TYPE: Tuple[float, Dict]

sentiment
sentiment(
    text: str,
    min_score_val: int = 0,
    max_score_val: int = 3,
) -> float

Uses chat completion model. A function that completes a template to check the sentiment of some text.

Example
feedback = Feedback(provider.sentiment).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate sentiment of.

TYPE: str

min_score_val

The minimum score value used by the LLM before normalization. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value used by the LLM before normalization. Defaults to 3.

TYPE: int DEFAULT: 3

RETURNS DESCRIPTION
float

A value between 0 and 1. 0 being "negative sentiment" and 1 being "positive sentiment".

sentiment_with_cot_reasons
sentiment_with_cot_reasons(
    text: str,
    min_score_val: int = 0,
    max_score_val: int = 3,
    temperature: float = 0.0,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the sentiment of some text. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.sentiment_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

Text to evaluate.

TYPE: str

min_score_val

The minimum score value used by the LLM before normalization. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value used by the LLM before normalization. Defaults to 3.

TYPE: int DEFAULT: 3

temperature

The temperature for the LLM response, which might have impact on the confidence level of the evaluation. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
float

A value between 0.0 (negative sentiment) and 1.0 (positive sentiment).

TYPE: Tuple[float, Dict]

model_agreement
model_agreement(prompt: str, response: str) -> float

Uses chat completion model. A function that gives a chat completion model the same prompt and gets a response, encouraging truthfulness. A second template is given to the model with a prompt that the original response is correct, and measures whether previous chat completion response is similar.

Example
feedback = Feedback(provider.model_agreement).on_input_output()
PARAMETER DESCRIPTION
prompt

A text prompt to an agent.

TYPE: str

response

The agent's response to the prompt.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not in agreement) and 1.0 (in agreement).

TYPE: float

conciseness
conciseness(text: str) -> float

Uses chat completion model. A function that completes a template to check the conciseness of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.conciseness).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate the conciseness of.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not concise) and 1.0 (concise).

conciseness_with_cot_reasons
conciseness_with_cot_reasons(
    text: str,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the conciseness of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.conciseness).on_output()

Args: text: The text to evaluate the conciseness of.

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0.0 (not concise) and 1.0 (concise) and a string containing the reasons for the evaluation.

correctness
correctness(text: str) -> float

Uses chat completion model. A function that completes a template to check the correctness of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.correctness).on_output()
PARAMETER DESCRIPTION
text

A prompt to an agent.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not correct) and 1.0 (correct).

correctness_with_cot_reasons
correctness_with_cot_reasons(
    text: str,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the correctness of some text. Prompt credit to LangChain Eval. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.correctness_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

Text to evaluate.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0 (not correct) and 1.0 (correct) and a string containing the reasons for the evaluation.

coherence
coherence(text: str) -> float

Uses chat completion model. A function that completes a template to check the coherence of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.coherence).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not coherent) and 1.0 (coherent).

TYPE: float

coherence_with_cot_reasons
coherence_with_cot_reasons(text: str) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the coherence of some text. Prompt credit to LangChain Eval. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.coherence_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0 (not coherent) and 1.0 (coherent) and a string containing the reasons for the evaluation.

harmfulness
harmfulness(text: str) -> float

Uses chat completion model. A function that completes a template to check the harmfulness of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.harmfulness).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not harmful) and 1.0 (harmful)".

TYPE: float

harmfulness_with_cot_reasons
harmfulness_with_cot_reasons(
    text: str,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the harmfulness of some text. Prompt credit to LangChain Eval. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.harmfulness_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0 (not harmful) and 1.0 (harmful) and a string containing the reasons for the evaluation.

maliciousness
maliciousness(text: str) -> float

Uses chat completion model. A function that completes a template to check the maliciousness of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.maliciousness).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not malicious) and 1.0 (malicious).

TYPE: float

maliciousness_with_cot_reasons
maliciousness_with_cot_reasons(
    text: str,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the maliciousness of some text. Prompt credit to LangChain Eval. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.maliciousness_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0 (not malicious) and 1.0 (malicious) and a string containing the reasons for the evaluation.

helpfulness
helpfulness(text: str) -> float

Uses chat completion model. A function that completes a template to check the helpfulness of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.helpfulness).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not helpful) and 1.0 (helpful).

TYPE: float

helpfulness_with_cot_reasons
helpfulness_with_cot_reasons(
    text: str,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the helpfulness of some text. Prompt credit to LangChain Eval. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.helpfulness_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0 (not helpful) and 1.0 (helpful) and a string containing the reasons for the evaluation.

controversiality
controversiality(text: str) -> float

Uses chat completion model. A function that completes a template to check the controversiality of some text. Prompt credit to Langchain Eval.

Example
feedback = Feedback(provider.controversiality).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not controversial) and 1.0 (controversial).

TYPE: float

controversiality_with_cot_reasons
controversiality_with_cot_reasons(
    text: str,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the controversiality of some text. Prompt credit to Langchain Eval. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.controversiality_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0 (not controversial) and 1.0 (controversial) and a string containing the reasons for the evaluation.

misogyny
misogyny(text: str) -> float

Uses chat completion model. A function that completes a template to check the misogyny of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.misogyny).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not misogynistic) and 1.0 (misogynistic).

TYPE: float

misogyny_with_cot_reasons
misogyny_with_cot_reasons(text: str) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the misogyny of some text. Prompt credit to LangChain Eval. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.misogyny_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0.0 (not misogynistic) and 1.0 (misogynistic) and a string containing the reasons for the evaluation.

criminality
criminality(text: str) -> float

Uses chat completion model. A function that completes a template to check the criminality of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.criminality).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not criminal) and 1.0 (criminal).

TYPE: float

criminality_with_cot_reasons
criminality_with_cot_reasons(
    text: str,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the criminality of some text. Prompt credit to LangChain Eval. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.criminality_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0.0 (not criminal) and 1.0 (criminal) and a string containing the reasons for the evaluation.

insensitivity
insensitivity(text: str) -> float

Uses chat completion model. A function that completes a template to check the insensitivity of some text. Prompt credit to LangChain Eval.

Example
feedback = Feedback(provider.insensitivity).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
float

A value between 0.0 (not insensitive) and 1.0 (insensitive).

TYPE: float

insensitivity_with_cot_reasons
insensitivity_with_cot_reasons(
    text: str,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check the insensitivity of some text. Prompt credit to LangChain Eval. Also uses chain of thought methodology and emits the reasons.

Example
feedback = Feedback(provider.insensitivity_with_cot_reasons).on_output()
PARAMETER DESCRIPTION
text

The text to evaluate.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0.0 (not insensitive) and 1.0 (insensitive) and a string containing the reasons for the evaluation.

comprehensiveness_with_cot_reasons
comprehensiveness_with_cot_reasons(
    source: str,
    summary: str,
    min_score: int = 0,
    max_score: int = 3,
) -> Tuple[float, Dict]

Uses chat completion model. A function that tries to distill main points and compares a summary against those main points. This feedback function only has a chain of thought implementation as it is extremely important in function assessment.

Example
feedback = Feedback(provider.comprehensiveness_with_cot_reasons).on_input_output()
PARAMETER DESCRIPTION
source

Text corresponding to source material.

TYPE: str

summary

Text corresponding to a summary.

TYPE: str

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0.0 (not comprehensive) and 1.0 (comprehensive) and a string containing the reasons for the evaluation.

summarization_with_cot_reasons
summarization_with_cot_reasons(
    source: str, summary: str
) -> Tuple[float, Dict]

Summarization is deprecated in place of comprehensiveness. This function is no longer implemented.

stereotypes
stereotypes(
    prompt: str,
    response: str,
    min_score_val: int = 0,
    max_score_val: int = 3,
) -> float

Uses chat completion model. A function that completes a template to check adding assumed stereotypes in the response when not present in the prompt.

Example
feedback = Feedback(provider.stereotypes).on_input_output()
PARAMETER DESCRIPTION
prompt

A text prompt to an agent.

TYPE: str

response

The agent's response to the prompt.

TYPE: str

min_score_val

The minimum score value used by the LLM before normalization. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value used by the LLM before normalization. Defaults to 3.

TYPE: int DEFAULT: 3

RETURNS DESCRIPTION
float

A value between 0.0 (no stereotypes assumed) and 1.0 (stereotypes assumed).

stereotypes_with_cot_reasons
stereotypes_with_cot_reasons(
    prompt: str,
    response: str,
    min_score_val: int = 0,
    max_score_val: int = 3,
    temperature: float = 0.0,
) -> Tuple[float, Dict]

Uses chat completion model. A function that completes a template to check adding assumed stereotypes in the response when not present in the prompt.

Example
feedback = Feedback(provider.stereotypes_with_cot_reasons).on_input_output()
PARAMETER DESCRIPTION
prompt

A text prompt to an agent.

TYPE: str

response

The agent's response to the prompt.

TYPE: str

min_score_val

The minimum score value used by the LLM before normalization. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value used by the LLM before normalization. Defaults to 3.

TYPE: int DEFAULT: 3

temperature

The temperature for the LLM response, which might have impact on the confidence level of the evaluation. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
Tuple[float, Dict]

Tuple[float, str]: A tuple containing a value between 0.0 (no stereotypes assumed) and 1.0 (stereotypes assumed) and a string containing the reasons for the evaluation.

groundedness_measure_with_cot_reasons
groundedness_measure_with_cot_reasons(
    source: str,
    statement: str,
    criteria: Optional[str] = None,
    use_sent_tokenize: bool = True,
    filter_trivial_statements: bool = True,
    min_score_val: int = 0,
    max_score_val: int = 3,
    temperature: float = 0.0,
) -> Tuple[float, dict]

A measure to track if the source material supports each sentence in the statement using an LLM provider.

The statement will first be split by a tokenizer into its component sentences.

Then, trivial statements are eliminated so as to not dilute the evaluation.

The LLM will process each statement, using chain of thought methodology to emit the reasons.

Abstentions will be considered as grounded.

Example
from trulens.core import Feedback
from trulens.providers.openai import OpenAI

provider = OpenAI()

f_groundedness = (
    Feedback(provider.groundedness_measure_with_cot_reasons)
    .on(context.collect()
    .on_output()
    )

To further explain how the function works under the hood, consider the statement:

"Hi. I'm here to help. The university of Washington is a public research university. UW's connections to major corporations in Seattle contribute to its reputation as a hub for innovation and technology"

The function will split the statement into its component sentences:

  1. "Hi."
  2. "I'm here to help."
  3. "The university of Washington is a public research university."
  4. "UW's connections to major corporations in Seattle contribute to its reputation as a hub for innovation and technology"

Next, trivial statements are removed, leaving only:

  1. "The university of Washington is a public research university."
  2. "UW's connections to major corporations in Seattle contribute to its reputation as a hub for innovation and technology"

The LLM will then process the statement, to assess the groundedness of the statement.

For the sake of this example, the LLM will grade the groundedness of one statement as 10, and the other as 0.

Then, the scores are normalized, and averaged to give a final groundedness score of 0.5.

PARAMETER DESCRIPTION
source

The source that should support the statement.

TYPE: str

statement

The statement to check groundedness.

TYPE: str

criteria

The specific criteria for evaluation. Defaults to None.

TYPE: str DEFAULT: None

use_sent_tokenize

Whether to split the statement into sentences using punkt sentence tokenizer. If False, use an LLM to split the statement. Defaults to False. Note this might incur additional costs and reach context window limits in some cases.

TYPE: bool DEFAULT: True

min_score_val

The minimum score value used by the LLM before normalization. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value used by the LLM before normalization. Defaults to 3.

TYPE: int DEFAULT: 3

temperature

The temperature for the LLM response, which might have impact on the confidence level of the evaluation. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
Tuple[float, dict]

Tuple[float, dict]: A tuple containing a value between 0.0 (not grounded) and 1.0 (grounded) and a dictionary containing the reasons for the evaluation.

qs_relevance
qs_relevance(*args, **kwargs)

Deprecated. Use relevance instead.

qs_relevance_with_cot_reasons
qs_relevance_with_cot_reasons(*args, **kwargs)

Deprecated. Use relevance_with_cot_reasons instead.

groundedness_measure_with_cot_reasons_consider_answerability
groundedness_measure_with_cot_reasons_consider_answerability(
    source: str,
    statement: str,
    question: str,
    criteria: Optional[str] = None,
    use_sent_tokenize: bool = True,
    filter_trivial_statements: bool = True,
    min_score_val: int = 0,
    max_score_val: int = 3,
    temperature: float = 0.0,
) -> Tuple[float, dict]

A measure to track if the source material supports each sentence in the statement using an LLM provider.

The statement will first be split by a tokenizer into its component sentences.

Then, trivial statements are eliminated so as to not delete the evaluation.

The LLM will process each statement, using chain of thought methodology to emit the reasons.

In the case of abstentions, such as 'I do not know', the LLM will be asked to consider the answerability of the question given the source material.

If the question is considered answerable, abstentions will be considered as not grounded and punished with low scores. Otherwise, unanswerable abstentions will be considered grounded.

Example
from trulens.core import Feedback
from trulens.providers.openai import OpenAI

provider = OpenAI()

f_groundedness = (
    Feedback(provider.groundedness_measure_with_cot_reasons)
    .on(context.collect()
    .on_output()
    .on_input()
    )
PARAMETER DESCRIPTION
source

The source that should support the statement.

TYPE: str

statement

The statement to check groundedness.

TYPE: str

question

The question to check answerability.

TYPE: str

criteria

The specific criteria for evaluation. Defaults to None.

TYPE: str DEFAULT: None

use_sent_tokenize

Whether to split the statement into sentences using punkt sentence tokenizer. If False, use an LLM to split the statement. Defaults to False. Note this might incur additional costs and reach context window limits in some cases.

TYPE: bool DEFAULT: True

min_score_val

The minimum score value used by the LLM before normalization. Defaults to 0.

TYPE: int DEFAULT: 0

max_score_val

The maximum score value used by the LLM before normalization. Defaults to 3.

TYPE: int DEFAULT: 3

temperature

The temperature for the LLM response, which might have impact on the confidence level of the evaluation. Defaults to 0.0.

TYPE: float DEFAULT: 0.0

RETURNS DESCRIPTION
Tuple[float, dict]

Tuple[float, dict]: A tuple containing a value between 0.0 (not grounded) and 1.0 (grounded) and a dictionary containing the reasons for the evaluation.

Embeddings

Bases: WithClassInfo, SerialModel

Embedding related feedback function implementations.

Attributes
tru_class_info instance-attribute
tru_class_info: Class

Class information of this pydantic object for use in deserialization.

Using this odd key to not pollute attribute names in whatever class we mix this into. Should be the same as CLASS_INFO.

Functions
__rich_repr__
__rich_repr__() -> Result

Requirement for pretty printing using the rich package.

load staticmethod
load(obj, *args, **kwargs)

Deserialize/load this object using the class information in tru_class_info to lookup the actual class that will do the deserialization.

model_validate classmethod
model_validate(*args, **kwargs) -> Any

Deserialized a jsonized version of the app into the instance of the class it was serialized from.

Note

This process uses extra information stored in the jsonized object and handled by WithClassInfo.

__init__
__init__(embed_model: BaseEmbedding)

Instantiates embeddings for feedback functions.

Example

Below is just one example. Embedders from llama-index are supported: https://docs.llamaindex.ai/en/latest/module_guides/models/embeddings/

from llama_index.embeddings.openai import OpenAIEmbedding
from trulens.feedback.embeddings import Embeddings

embed_model = OpenAIEmbedding()

f_embed = Embedding(embed_model=embed_model)
PARAMETER DESCRIPTION
embed_model

TYPE: BaseEmbedding

cosine_distance
cosine_distance(
    query: str, document: str
) -> Union[float, Tuple[float, Dict[str, str]]]

Runs cosine distance on the query and document embeddings

Example

Below is just one example. Embedders from llama-index are supported: https://docs.llamaindex.ai/en/latest/module_guides/models/embeddings/

from llama_index.embeddings.openai import OpenAIEmbedding
from trulens.feedback.embeddings import Embeddings

embed_model = OpenAIEmbedding()

# Create the feedback function
f_embed = feedback.Embeddings(embed_model=embed_model)
f_embed_dist = feedback.Feedback(f_embed.cosine_distance)                .on_input_output()
PARAMETER DESCRIPTION
query

A text prompt to a vector DB.

TYPE: str

document

The document returned from the vector DB.

TYPE: str

RETURNS DESCRIPTION
float

the embedding vector distance

TYPE: Union[float, Tuple[float, Dict[str, str]]]

manhattan_distance
manhattan_distance(
    query: str, document: str
) -> Union[float, Tuple[float, Dict[str, str]]]

Runs L1 distance on the query and document embeddings

Example

Below is just one example. Embedders from llama-index are supported: https://docs.llamaindex.ai/en/latest/module_guides/models/embeddings/

from llama_index.embeddings.openai import OpenAIEmbedding
from trulens.feedback.embeddings import Embeddings

embed_model = OpenAIEmbedding()

# Create the feedback function
f_embed = feedback.Embeddings(embed_model=embed_model)
f_embed_dist = feedback.Feedback(f_embed.manhattan_distance)                .on_input_output()
PARAMETER DESCRIPTION
query

A text prompt to a vector DB.

TYPE: str

document

The document returned from the vector DB.

TYPE: str

RETURNS DESCRIPTION
float

the embedding vector distance

TYPE: Union[float, Tuple[float, Dict[str, str]]]

euclidean_distance
euclidean_distance(
    query: str, document: str
) -> Union[float, Tuple[float, Dict[str, str]]]

Runs L2 distance on the query and document embeddings

Example

Below is just one example. Embedders from llama-index are supported: https://docs.llamaindex.ai/en/latest/module_guides/models/embeddings/

from llama_index.embeddings.openai import OpenAIEmbedding
from trulens.feedback.embeddings import Embeddings

embed_model = OpenAIEmbedding()

# Create the feedback function
f_embed = feedback.Embeddings(embed_model=embed_model)
f_embed_dist = feedback.Feedback(f_embed.euclidean_distance)                .on_input_output()
PARAMETER DESCRIPTION
query

A text prompt to a vector DB.

TYPE: str

document

The document returned from the vector DB.

TYPE: str

RETURNS DESCRIPTION
float

the embedding vector distance

TYPE: Union[float, Tuple[float, Dict[str, str]]]